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Abstract

Following our previous discussion and suggestion\ the relationship between ~ow mode evolution and the Rayleigh
number was theoretically investigated[ From the simpli_ed governing equations\ analysis was conducted by using the
singular theory[ The results show that ~ow patterns of falling liquid _lms vary with the changing Rayleigh number[ This
analysis accounts rationally for the evolving processes of falling liquid _lms along a heated vertical wall[ Þ 0888 Elsevier
Science Ltd[ All rights reserved[
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Nomenclature

` gravity acceleration
L wavelength
n Ra:Rac

q heat ~ux
Ra Rayleigh number\ Ra � `bDT9d

2:na
Re Reynolds number\ Re � 3G:m
t time
t� dimensionless time\ t� � at:d1

x\ z coordinates
x�\ z� dimensionless coordinates[

Greek symbols
a thermal di}usivity
b coe.cient of volume expansion
G liquid mass ~ow rate per unit width
d average _lm thickness
DT9 average temperature di}erence between heated
wall and free interface
u temperature departure
u� dimensionless temperature departure
m dynamic viscosity
n kinetic viscosity
s s � d:L

� Corresponding author[

C stream function
C� dimensionless stream function[

0[ Introduction

Falling liquid _lms cause wide concern nowadays for
their high heat transfer capability[ Some researches ð0Ð4Ł
show that falling liquid _lms can dramatically enhance
heat transfer and have complex ~ow modes[ Unfor!
tunately\ it is still di.cult to explain the physical mech!
anism of the processes[

The stabilities of falling liquid _lms were com!
prehensively investigated widely in past decades[ Accord!
ing to the theory of stability the falling _lms are unstable
at any Reynolds number ð5Ł[ For very large Reynolds
numbers "Re × 0999#\ the waves on falling _lms are of
shear!waves with wavelengths comparable to or shorter
than average _lm thickness[ The interfacial dynamics
would be dominated by the internal turbulence ð6\ 7Ł[
At a moderate Reynolds number 0 ³ Re ³ 0999\ long
interfacial waves of gravityÐcapillary instabilities appear
ð8Ł[ Wave patterns near the inception line vary with
di}erent Reynolds numbers[ The two!dimensional reg!
ular wave regimes are usually observed at Re ½ 4Ð19 near
the wave inception line[ In other cases\ the _lm waves are
three!dimensional and irregular ð09Ł[ The characteristics
of falling liquid _lms are mainly described by the Rey!
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nolds number which scales the ratio between inertia force
and viscous force[

However\ experimental results showed that ~ow pat!
terns of falling liquid _lms are considerably complex ð00Ł
and the recent experiments ð4Ł reveal that thermal con!
ditions of a vertical wall have signi_cant e}ects on inter!
facial waves[

We found ð01Ł that the thermal non!equilibrium within
liquid _lms might have an important e}ect on falling
liquid _lms and hence\ proposed to take Ra as an impor!
tant parameter[ In the present paper\ singular theory was
used to analyze the ~ow pattern evolution of falling liquid
_lms along a heated vertical ~at wall[ The aim is to exhibit
the role of thermal non!equilibrium on the stabilities of
falling liquid _lms[

1[ Theoretical considerations

1[0[ Mathematical model

The governing equations for falling liquid _lms\ shown
in Fig[ 0\ are ð01Ł
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where the dimensionless stream function is de_ned as
C� �C:a\ in which C is a stream function and a is
thermal di}usivity of liquid[ u� is a dimensionless tem!

Fig[ 0[ Physical model for analysis[

perature\ de_ned as u� � u:ðan:`bd2Ł\ in which u is a
temperature departure from the average value\ d is an
average _lm thickness\ b and n are the coe.cients of
volume expansion and kinetic viscosity of liquid\ re!
spectively\ ` is the gravity acceleration\ t� is the dimen!
sionless time scale\ t� � t:ðd1:aŁ\ x� � x:d and z� � z:d
are dimensionless coordinates[

Here\ Pr � n:a and Ra � `bd2DT9:a1 are considered as
the independent parameters in the present model[ Gen!
erally\ Pr could be taken as a constant for a given liquid[
Hence\ Ra is the principal parameter to reveal the e}ect
of thermal non!equilibrium on the evolution of falling
_lms[

The above!mentioned analytical model is analogous to
that of Saltzman ð02Ł[ Lorenz ð03Ł reduced the analytical
model of Saltzman ð02Ł to a group of _nite dimensional
non!linear equations and solved numerically to explore
the ~ow pattern evolution with Ra\ varied from simple
periodic ~ow to complex periodic ~ow and _nally to
chaotic ~ow[ The method proposed by Lorenz ð03Ł was
employed to analyze falling liquid _lms in this paper[

1[1[ Reduction of equation

In equation "0#\ the fourth term on the left\ Ra Pr\
would be a constant\ for a given falling liquid _lm and
can be eliminated by di}erentiating the equation with
respect to x�[ As a result\ equation "0# could be reduced
to

1

1x� 091 1C�
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¦
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Referring to Saltzman ð02Ł\ the stream function C� and
temperature u� can be represented as a sum of double!
Fourier components[ For turbulence\ small wave num!
bers and big scale vortices play the principal role in the
formation and transfer of turbulent energy and Reynolds
shear stress[ It is reasonable to expect that big vortices
play the main role in the evolution of falling liquid _lms[
Therefore\ C� and u� can be truncated under low dimen!
sion by referring to Lorenz|s investigation ð03Ł[ We obtain

s

0¦s�
C� �z1X"t�# sin"px�# sin"spz�# "3#

s

"0¦s1#2p2
u� �z1Y"t�# cos"px�# sin"spz�#

−Z"t�# sin"1spz�# "4#

where s � d:L[
Substitute equations "3# and "4# into equations "2# and

"1#[ Omitting the trigonometric terms other than those
occurring in "3# and "4#\ we obtain
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dX
dt

� −Pr X¦Pr Y

dY
dt

� mX−Y−XZ

dZ
dt

� −bZ¦XY "5#

where t � p1"0¦s1#t�[ b � 3s:"0¦s1#\ n � Ra:Rac[
Rac � p3"0¦s1#2:s[

2[ Singular analysis

Water was chosen as a working ~uid\ with Pr � 6[9[
As the wave thickness is comparable to the wavelength
ð8Ł\ the ratio of the average _lm thickness to the wave!
length can reasonably be chosen as s � 9[696"s1 � 0:1
ð03Ł#[ This results in Rac � 354[ Referring to Ott ð04Ł\
equation "5# has three positive steady states[ They are

O"X9\ Y9\ Z9# � "9\ 9\ 9#

P¦"XP¦\ YP¦\ ZP¦# � "zb"n−0#\ zb"n−0#\ n−0#

"n × 0#

P−"XP−\ YP−\ ZP−# � "−zb"n−0#\ −zb"n−0#\ n−0#

"n ³ 0#[ "6#

Pr and b will be constants for a given falling liquid
_lm[ So\ the behavior of the system could be examined
by changing the value of n[ The stability of the steady
state O is given by the eigenvalues of the Jacobian matrix

J0 � &
−Pr Pr 9

n −0 9

9 9 −b'[
The eigenvalue equation would be

"S¦b#ðS1¦"Pr¦0#S¦Pr"0−m#Ł � 9[ "7#

The three roots of equation "7# are

S0 � −b

S1 � 0
1
ð−"Pr¦0#¦z"Pr¦0#1−3 Pr"0−n#Ł

S2 � 0
2
ð−"Pr¦0#−z"Pr¦0#1−3 Pr"0−n#Ł "8#

S0\ S1 and S2 are all negative for 9³ n ³ 0\ which indi!
cates the stead state O being the only attractor of the
system[ As n passes through 0\ S1 becomes positive with
the other two remaining negative[ This indicates that
O has a two!dimensional stable manifold and a one!
dimensional unstable manifold[ Along with the loss of
stability of O\ the two _xed points P¦ and P− are born[
The Jacobian matrix of point P¦ and P− is

J1 � &
−Pr Pr 9

0 −0 3zb"n−0#

2zb"n−0# 2zb"n−0# −b '

and accordingly\ the equivalent eigenvalue equation
would be

S2¦"Pr¦b¦0#S1¦b"Pr¦n#S¦1b Pr"n−0#[ "09#

Obviously\ all coe.cients of the eigenvalue equation are
positive when n × 0[ Equation "09# must have a negative
root and the other two roots are negative if

p2
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From equation "00#\ we have n ¾ n0 � 0[144[ Hence\ the
states P¦ and P− are stable under the condition
0 ³ n ¾ 0[144 and thereby become the attractors of the
system[ Following the unstable manifold of O\ it goes to
the steady state of P¦ and P−[ As n increases further\
two negative eigenvalues of P¦ and P− coalesce and
become complex conjugate eigenvalues with negative real
parts[ In this regime\ orbits approach P¦ and P− by
spiraling around them[

If n is slightly greater than n0\ equation "09# has a
negative eigenvalue and a couple of complex conjugate
eigenvalues

S0 ³ 9\ S1 � Sr¦iSi and S2 � Sr−iSi

where the real part\ Sr ³ 9[ Hence\ P¦ and P− become a
stable focus[ The eigenvalue equation can be written as

"S−S9#"S−Sr−iSi#"S−Sr¦iSi# � 9[ "01#

Rearranging\ it yields

S2−"S9¦1Sr#S1¦"1S9Sr¦S1
i ¦S1

r #S

−S9"S1
r ¦S1

i # � 9[ "02#

Comparing the coe.cients of equations "02# and "09#\
we have

Pr¦b¦0 � −"S0¦1S9#

b"n¦Pr# � 1S0Sr¦S1
i ¦S1

r

1b Pr"n−0# � −S0"S1
r ¦S1

i #[ "03#

When Sr � 9\ the following expressions were derived

n1 �
Pr"Pr¦b¦2#

Pr−b−0
� 19[11

1Sr

1n bn�n1

�
b"Pr−b−0#

1ðb"n1¦b#¦"Pr¦b¦0#Ł1
× 9[ "04#

That is\ increasing n still further\ the steady states P¦ and
P− become unstable at n � n1 � 19[11 for the real parts
of their complex conjugate eigenvalues pass from nega!
tive to positive "a Hopf bifurcation#[ P¦ and P− become
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unstable through stable[ As n increases further through
n1\ the system gets into a chaotic regime[ There is only
one chaotic attractor[ The orbits around P¦ and P−

behave irregularly to form a local unstable but intact
stable chaotic attractor[

3[ Numerical integration

The behavior of the manifold of O\ P¦ and P− has
been discussed analytically above\ that is as n is greater
than n � 19[11\ the system becomes chaotic[ As an exam!
ple\ to illustrate the chaotic orbits\ a numerical inte!
gration procedure was employed to solve the non!linear
equation "5# under the condition n � 10 for water[ Using
the RungeÐKutta procedure\ the dimensionless time
increment Dt� is equal to 9[90[ The initial conditions were
chosen as a slight departure from the steady state of no
attraction\ namely "9\ 0\ 9# and "9\ −0\ 9#[ The number
of iteration was chosen as 2999[ The coordinate of the
two steady states P¦ and P− are "5[0309\ 5[0309\ 19# and
"−5[0309\ −5[0309\ 19#\ respectively[ The instability of
the system is evident[ Figure 1 shows the trajectory in
phase space corresponding to iterations 0Ð2999[ All three
variables grow rapidly at _rst and then move around
the attractor with irregular orbits[ If the initial point is
"9\ 0\ 9#\ the point "X\ Y\ Z# quickly approaches the steady
state P− "−5[0309\ −5[0309\ 19# and then moves around
P−[ The motion of the point "X\ Y\ Z# is spiral and irregu!
lar[ Evidently\ the state P− is the chaotic attractor under
this condition[ If the initial point is "9\ −0\ 9#\ the point
"X\ Y\ Z# similarly goes to the steady state P¦

"5[0309\ 5[0309\ 19# soon and then moves around the
steady state[ Figures 3 and 4 show the projections of the
trajectories on the xÐy plane[ The black area around
attractor P¦ or P− indicates the chaotic motion of the
dynamic system[ Obviously\ the trajectory around P¦ is

Fig[ 1[ Trajectory of initial point "9\ 0\ 9#[

Fig[ 2[ Trajectory of initial point "9\ −0\ 9#[

Fig[ 3[ Projection of the trajectory of "9\ 0\ 9# on XÐY plane[

Fig[ 4[ Projection of the trajectory of "9\ −0\ 9# on XÐY plane[

the same with that around P−[ They have the same physi!
cal signi_cance[

The procedure proposed by Badii and Politi ð05Ł was
adopted to calculate the fractal dimension of the chaotic
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system[ For a system described by three _rst!order ordi!
nary di}erential equations\ the attractor will be a line
and hence\ of one dimension when the motion is periodic
and quasiperiodic motion made up of two non!harmonic
frequencies will form a two!dimensional torus[ If the
process is one displaying deterministic chaos\ the dimen!
sion of the attractor falls between two and three[ On the
other hand\ if the process is statistically random\ then the
attractor will _ll the entire phase space and its dimension
will be three[

The phase space is constituted by "X\ Y\ Z#[ According
to the nearest!neighbor method of Badii and Politi ð05Ł a
set of N points of the attractor was chosen and a point x
on this attractor is arbitrarily selected as a reference
point[ Choose at random a subset of k points denoted by
yi "i � 0\ 1\ [ [ [ \ k and k ³ N# from the original set of N
points and consider the distance from x to each point yi[
De_ne

D �min >x−yi> "05#

D is the distance to the nearest neighbor[ In order to
obtain a statistically useful value of the minimum
distance\ calculation is repeated over many randomly
chosen reference points to obtain the average Da[ The
process is then repeated for a sequence of k values up to
k � N−0 for each x[ The number of nearest neighbors
contained in m!dimensional hypersphere of radius D
around a given point should vary as Dd if the attractor is
d!dimensional[ It is argued that

Da ½ k"−0:d# "06#

and hence\

d � −lim
log k
log Da

[ "07#

The negative\ inverse slope of a log Da vs[ log k plot is the
fractal dimension[

The calculated fractal dimension of the system under
the condition n � 10 is 1[28[ This means that as n is
greater than 19[11\ the system gets into chaos[ The result
is consistent with that of the above mentioned singular
analysis in Section 2[

4[ Comparison with discussion

These projections are compared with that of the exper!
imental results\ obtained by Lacy and Dulker ð1Ł from a
measured _lm thickness time series[ We realize that the
calculated trajectory is analogous to that from the exper!
iment[

The present results indicate that thermal non!equi!
librium has an important e}ect on stabilities of falling
liquid _lms\ as we previously pointed out ð01Ł[ The exper!
imental results of Lyu and Mudawar ð4Ł show that liquid
temperatures within _lms vary oppositely to the variation
of _lm thickness[ For a given Reynolds number\ the tem!

perature ~uctuation increased monotonically as heat ~ux\
q\ was increased to steady!state values between 9 and
64 999 W m−1[ The e}ect of interfacial waves on liquid
temperature was most signi_cant for Re ¾ 4999 and less
noticeable for Re − 09 999\ even at heat ~uxes in rela!
tively high values of 49 999 W m−1[ Probability density
distributions of _lm thickness are sensitive to heat ~uxes
at relatively low Re "Re ³ 4999#\ but rather invariant
with heat ~uxes for Re − 4999[ Increasing heat ~ux also
enhances the relationship between thickness and tem!
perature[ Lyu and Mudawar ð4Ł commented on the role
of heat ~ux to falling liquid _lms[ One suggestion is that
increasing the ~ux raises the liquid temperature\ resulting
in a lower kinetic viscosity and consequently\ a higher
Reynolds number[ Another suggestion is that heating
could also a}ect the hydrodynamic structure of the inter!
facial waves due to the change in kinetic viscosity and
surface tension and so\ the surface tension temperature
gradients[ The experimental results indicate that the Rey!
nolds number is not the only dimensionless parameter
in~uencing the ~ow and heat transfer for falling liquid
_lms[

The present analysis shows that\ as the Rayleigh num!
ber increases up to the critical point\ Rac � 354 for water\
the steady state of liquid _lm changes and converts to
another steady state[ The corresponding ~ow patterns
convert from smooth form to wavy form[ As the Ra
increases further\ the simple wavy ~ow becomes complex
wavy ~ow[ Eventually\ as the Rayleigh number increases
up to 8399\ the ~ow evolves into chaos[ The analyses
clearly reveal that the Rayleigh number would be an
important parameter in falling liquid _lms[

Noting\ for simpli_cation of the problem\ the gov!
erning equations were severely truncated and the high
wave number terms were neglected[ It is not clear how
much the severe truncation will a}ect the analytical
results[ Because of the e}ect of the high wave number
terms\ the periodic wavy ~ow might not exist and be
replaced by quasiperiodic wavy ~ow[ Further\ the ther!
mocapillarity and evaporation on the free interface were
not taken into account[ We know thermocapillarity is an
important destabilizing factor[ It makes wavy _lms more
distorted and irregular[ Hence\ the value of the practical
critical Rayleigh number might be di}erent from that of
the analytical result for the in~uence[ Further exper!
imental and theoretical works will be needed[

5[ Conclusion

Conclusions reached can be summarized as]

"0# the thermal non!equilibrium should play an import!
ant role in falling liquid _lms^

"1# the Rayleigh number might be a principal dimen!
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sionless parameter in falling liquid _lms along a
heated vertical ~at wall^

"2# ~ow patterns of falling liquid _lms vary with changes
of the Rayleigh number^

"3# further experimental and theoretical investigations
are urgently needed[
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